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Abstract— Recently, robots started making their first steps
towards real world applications in agriculture and more specifi-
cally, in vineyards. Among other challenges, recognizing clusters
of grapes and performing visual servoing towards them is an
important task. Although approaches such as deep learning
have emerged that seem to simplify the problem, and databases
for training data are publicly available, results are affected
severely by weather conditions. In this paper, the detection
robustness of grape clusters is investigated subject to rain
conditions, with the use of two state-of-the-art models for object
detection, Mask-RCNN and YOLOv3. It is shown that rain
in an image markedly reduces the accuracy of the classifiers,
indicating that a de-raining method is vital in classification and
training detection methods with rainy images is not enough.
Cycle-GANs are exploited to generate de-rained images from
rainy samples. The method is validated in a lab experiment
using a wheeled robotic platform and a low-cost on board
computer. Mask-RCNN proves to be computationally intensive
to run on board compared to YOLOv3. In this scope, we
demonstrate a complete, robust under rainy weather, low-cost
and expandable application for precision agriculture in which
a robot identifies a cluster of grapes at a high frequency
by running YOLOv3-tiny on board and approaches it at a
predefined distance.

I. INTRODUCTION

According to the Food and Agriculture organization of the
United Nations, plant pests and diseases affect food crops,
cause significant losses to farmers and threaten food security
[1]. Automating the processes of collecting samples (e.g.,
capture images) from the field can help to monitor the field
with precision and prevent diseases from spreading. Usually,
such tasks involve the development of:
• an object detection algorithm to identify the points of

interest as specified by the agronomist in charge, and
• a visual servoing controller for approaching and captur-

ing images from the targets, e.g., plant parts and soil.
The design and development of object detection and visual

servoing algorithms for outdoors applications are notoriously
demanding tasks, since their performance and autonomy
are affected significantly by weather conditions, e.g., rain,
fog, direct sunlight, etc. [2]. To address such challenges,
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roboticists are adapting emerging technologies such as deep
learning; despite their efforts only a few guidelines concern-
ing these tasks are available [3].

Driven by the need for increased quantity and quality
of agricultural products, we focus on fundamental research
objectives that will allow bringing robots with inspection
capabilities into the precision agriculture (PA) domain [4].
Related attempts have shown important results; at least
38 different crop diseases can be identified using machine
learning, while especially regarding grapes, black measles,
grape leaf blight and grape black rot can be detected [5], [6],
[7]. Concerning fruit and yield detection in [8] and [9], per-
pixel classification is performed using unsupervised multi-
scale RGB and IR feature learning for fruit segmentation.
Such methods require high resolution images, impossible to
run in real-time. Approaches dealing exclusively with image
recovery from rain or fog have been presented in [3], [10],
[11], [12]. In these, the focus is on the quality of the output
image and not on application constraints. As a result, either
they have not been tested in high refresh rates, or require
several seconds to de-rain a single frame. Visual servoing
for monitoring row-crops was recently implemented in [13]
using an on-board laptop combined with a single board
computer (SBC) for data processing, while yield estimations
in vineyards were performed in [14]. In both cases the
weather conditions were ideal and the processing resources
plenty. In [15] and [16], a “shroud” was used to block
direct sunlight interfering with 3D object detection and weed
detection, respectively. Finally, as an important addition to
these vision-related advances, centimeter precision RTK-
GNSS receivers have been made available to guide robots
along accurate pre-programmed paths [17].

Although detection and navigation tasks have been sig-
nificantly simplified through such works, complete robust
solutions for vision driven navigation in the field still remain
out of reach. Towards this goal, we consider robust object
detection under various weather conditions as the key chal-
lenge. Thus, we focus on the problematic scenario in which
the robot has successfully navigated in the area of interest,
but cannot identify the target to be inspected due to weather
conditions, e.g., fog, rain, raindrops on camera lenses etc.
We choose the vineyard as the field of interest, and consider
robust detection of grapes as the key component of a generic
visual-servoing scheme allowing for a basic navigation task,
i.e., approach a plant at a predefined distance. A scheme
is developed (see Figure 1) that enables a camera-equipped
robot to constantly search for grape clusters using an efficient



Fig. 1. The method proposed for robust grape cluster detection. The heavy-
rained frame is de-rained with the use of Cycle GANs [25]. Detection is
performed using Mask-RCNN [20] & YOLOv3 [24]. The red track is chosen
for lab experiments since YOLOv3 is faster and the variation of YOLOv3-
tiny is running at 10FPS on Jetson nano [27].

learnt strategy, and adjust its position with respect to a
selected cluster. The scheme is tested successfully in the
lab using a wheeled robot. The approach is expandable
and applicable also to other types of crops. Data collection
and annotation times are reduced significantly by applying
augmentation methods to the training dataset. Systematic
evaluation of state-of-the-art (SOTA) learning methods re-
vealed the appropriate algorithm for the visual-servoing PA
task. All software runs on the robot’s low-cost SBC at a
sufficiently high frequency, making the scheme applicable to
realistic scenarios. Our contributions include:
• The presentation of a complete visual-servoing method

for PA tasks, involving image recovery and fast yet
robust object detection running on a low-cost SBC.

• A quantitative comparison of two SOTA learning meth-
ods when applied to grape recognition.

• The highlighting of image recovery importance in robust
object detection via learning and the development of
a solution based on filtering via generative adversarial
networks (GANs) [18].

The rest of this paper is organized as follows: In Section
II, two methods for recognizing grapes in a vineyard, Mask-
RCNN and YOLOv3, are described and evaluated. Section
III introduces the de-raining method used, while Section IV
describes the lab experiment conducted. In Section V we
present the experimental results and, in Section VI we con-
clude our remarks and propose plausible future directions.

II. GRAPE DETECTION METHODS
This work aims to make the procedure of detecting, iden-

tifying and following clusters of grapes, robust and indepen-
dent of the weather conditions. In this section, the dataset in
which the experiments were based on is presented, followed
by an analysis of grape recognition methods. The scenario
of grape detection was chosen for evaluation purposes since
it constitutes a challenging and useful task in the field of
robotics, due to changing weather conditions in vineyard and
the need to monitor grapes for many months.

A. Dataset
For our experiments we exploit the Embrapa Wine Grape

Instance Segmentation Dataset (WGISD) [19] which is pub-
licly available. The dataset consists of 300 RGB images with

a total of 4,432 grape clusters, already divided in a train and
test set. Since no intervention was performed in the plants
before the construction of the dataset, the WGISD depicts a
realistic wine grape production scenario. To perform instance
segmentation, a set of masks should be provided for the grape
clusters. Apparently, only 2,202 out of 4,432 clusters, i.e 137
out of 300 images, contain annotated masks, while bounding
boxes are provided for all the clusters.

B. Mask-RCNN Grapes Instance Segmentation

To identify grapes in a vineyard, two different methods
are employed. First, the Mask-RCNN method is exploited
[20]. It is a SOTA method for generating segmentation
masks for each instance of an object in an image. Mask-
RCNN combines a fully convolutional network (FCN) with
a Faster R-CNN detector resulting in a complete, end-to-
end, instance segmentation solution. For the experiments
here, 137 images with the annotated masks were used. The
network is initialized using the weights from the COCO
dataset [21], while only the top layer is left unfrozen for
training. The model is trained for a total of 30 epochs, while
leaving the images to their initial shape.

To test the accuracy of the trained model, the mean average
precision (mAP) metric for object detection was used. Since
there is only one class (i.e.: grapes) then mAP=AP. Average
precision is defined as the area under the precision-recall
curve [22], i.e:

AP =
∫ 1

0
p(r)dr (1)

Precision and recall are computed according to the Intersec-
tion over Union (IoU) metric between the predicted bound-
ing box and the ground truth bounding box. A prediction is
assumed to be correct, if IoU ≥ 0.5.

Testing the model in the test set yields an AP accuracy
of 67.87%. To demonstrate the sensitivity of the method
to weather conditions, the clean test images were altered
with light and heavy rain, using the Automold library [23].
Consequently, two new test sets are created, i.e. a light-rained
test set and a heavy-rained test set. Testing the same trained
model in these datasets, yields an AP accuracy of 43.07%
and 31.46% respectively, indicating a 36% absolute drop and
over 50% relative drop compared to the clean (no-rain) test
set. Qualitative results for the same single RGB image from
all three test sets with the use of Mask-RCNN are shown in
Figure 2.

C. YOLOv3 Grapes Object Detection

Mask-RCNN indeed produces a detailed and precise mask
for each cluster of grapes in an image. Nonetheless, in
this work the aim is to create a robust real-time robotic
application, and Mask-RCNN falls far behind, achieving
around 2 FPS with the use of a GeForce GTX 1660. In
the case of the Jetson nano, Mask-RCNN needed several
seconds to detect grapes in one frame. Hence, our attention
was redirected to YOLOv3 [24], a SOTA, real-time object
detection system. With YOLOv3, it is feasible to process
images at 20 FPS with a GeForce GTX 1660, which is close
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Fig. 2. (a) Mask Ground Truth for a frame in a vineyard, (b) Prediction
of the Mask-RCNN for the clean image, (c) Prediction of the Mask-RCNN
model with light rain added, (d) Prediction of the Mask-RCNN with heavy
rain added. Adding rain clearly reduces the AP accuracy of Mask-RCNN.

to the max frame rate that the used camera produces. For this
experiment, a total of 300 images was used in the WGISD
dataset. The model was trained for 300 epochs.

After the YOLOv3 model converged, it was tested in all
three test sets. The average precision accuracy was used with
IoU≥0.5, the same as previously, although the accuracy was
expected to be smaller compared to Mask-RCNN, due to
the increase in the detection rate. The model yields an AP
accuracy of 49.97%, 47.68% and 44.42% for the clean, light-
rained and heavy-rain test sets, respectively, indicating once
again a big drop between the clean test set and the rained test
set. Detections are achieved at 20 FPS rendering YOLOv3
sufficient for an agriculture robotic application. Qualitative
results for the same single RGB image from all three test
sets with the use of YOLOv3 are shown in Figure 3.

(a) (b)

(c) (d)

Fig. 3. (a) Bounding Box Ground Truth for a frame in a vineyard, (b)
Prediction of the YOLOv3 for the clean image, (c) Prediction of the Yolo-
v3 model with light rain added, (d) Prediction of the YOLOv3 with heavy
rain added. Adding rain clearly reduces the AP accuracy of Yolo-v3.

D. Rain Augmentation

From both recognition methods, it is clear that weather
conditions play a critical role in object detection and con-
sequently in PA robotic applications. Hence, to construct
a robust and stable method for following and identifying
clusters of grapes, the instability due to adverse weather
phenomena, e.g. rain, has to be eliminated.

To address this impediment, a first solution is to augment
the train set with heavy rain using software and train a
new model based on the new augmented train set. In this
way, the model would be able to recognize clusters of
grapes with ease since it is trained in a rainy environment.
As a result, Mask-RCNN and YOLOv3 were both trained
with the augmented dataset under the same clean training
circumstances for direct comparison. For Mask-RCNN the
new model achieves a 65.16% AP accuracy, indicating that it
is indeed harder to train an augmented train set. On the other
hand, its performance in the light-rained and heavy-rained
test set increased by 14% and 20% respectively, reaching
57.19% and 51.46%. Similar results are observed in the
YOLOv3 case. The full experimental results of Section II
are displayed in Table I.

TABLE I
AP ACCURACY FOR THE CLEAN AND AUGMENTED TRAIN SET IN ALL

THREE TEST SETS BOTH FOR MASK-RCNN AND YOLOV3 METHODS.

Training / Testing Clean (%) Light-Rained (%) Heavy-Rained (%)

Mask-RCNN Clean 67.88 43.07 31.46
Augmented 65.16 57.19 51.11%

YOLOv3 Clean 49.97 47.68 44.42
Augmented 48.91 48.41 47.11

III. DE-RAINING METHOD

While augmenting the training data with rainy images
reduces the gap between the clean test set and the rained
test sets, the need to create a more robust method remains.
As a result, in this section, Cycle GANs [25] are applied for
eliminating rain from images. In addition, they are applied
for de-fogging purposes as well, to demonstrate the stability
and robustness of the method.

Cycle-GANs [25] are a special category of GANs[18],
specialized in converting one type of images to another,
including zebras to horses, real scenery to Monet’s paintings
and vice versa. Technically, Cycle-GANs learn to translate
images from a source domain X to a target domain Y,
through a mapping G: X → Y. Apparently, this mapping is
highly under-constrained and thus we interconnect it with the
inverse mapping F: Y → X, introducing a cycle consistency
loss to achieve F(G(X)) = X. One part of the cycle gan,
namely the discriminator classifier, tries to distinguish real
data from fake data created by the second part of the
cycle-gan i.e.: the generator. In turn, the generator through
the training process learns to produce better fake data by
incorporating feedback from the discriminator.

Taking advantage of this technique, a generator was
trained to convert rainy images to clear ones. The archi-
tecture proposed by [25] and implemented by [26] which



achieves impressive results was utilised. The discriminator
network consists of 4 blocks of increasing filters, that contain
one 2D convolutional layer, a 2D Instance Normalization
layer and one LeakyRELU [30]. The generator consists
of 2 similar blocks, followed by 7 residual blocks and a
final convolutional layer that map the features to RGB.
The identity loss Lid is defined to drive the mapping into
preserving the input/output color composition. The cyclic
loss Lcyc tries to achieve F(G(x)) = x and F(G(y)) = y.
Finally LGAN =LGAN(G,DY ,X ,Y ) is the adversial loss that
encourages G(x) to produce images similar to the domain Y,
while D(y) aims to distinguish between real and generated
images. The LGAN(F,DX ,Y,X) takes care of the opposite
direction. Conclusively, the following expression has to be
minimised:

G∗,F∗ = argmin
G,F

max
Dx,Dy

L (G,F,Dx,Dy) (2)

where: L (G,F,Dx,Dy) = LGAN(G,Dy,X ,Y ) +
LGAN(F,Dx,Y,X)+λ1Lcyc(G,F)+λ2L G,F)

The discriminators and generators are trained for 200
epochs for their losses to converge and afterwards they are
evaluated in the vineyard. Figure 4 shows qualitative results
of a de-rained image produced by the Cycle-GAN generator.
Finally, Mask-RCNN and YOLOv3 were used for grape
cluster detection on the de-rained dataset and a comparison
between no-rain predictions, heavy-rained predictions and
de-rained predictions is shown in Table II. It is observed that
both methods for grape clusters detection achieve a close-
range AP accuracy to the initial test set, where the rain was
absent. Moreover, they exceed the AP accuracy of the data
augmentation method, indicating that de-raining an image is
much more effective and robust than training the data with
rain.

TABLE II
AP ACCURACY FOR MASK-RCNN AND YOLOV3 BEFORE AND AFTER

DE-RAINING USING CYCLE-GANS.

Test Set / Method Mask-RCNN YOLOv3
Heavy-Rained Test Set 31.46% 44.42%

Data Augmentation 51.11% 47.11 %
CycleGAN De-rained Test Set 61.21% 48.99 %

Initial Clean Test Set 67.88% 49.97%

To examine the robustness and universality of the de-
raining method, we experimented with another common
weather condition i.e.: fog and haze due to cold. The initial
image set is augmented with fog and a new discriminator and
generator were trained to convert a foggy image to a clear
one. Figure 4 depicts the results after the convergence of the
Cycle-GAN. It is once again clear, that Cycle-GANS can ef-
fectively transform an image with heavy weather conditions
to a smoother one, independently of the condition, rendering
them a perfect solution for a robust outside application.

IV. LAB EXPERIMENT

To combine all the studied elements into one integrated
robust method for PA robotic applications, a lab experiment

(a) (b)

(c) (d)

Fig. 4. (a) Vineyard image with the addition of synthetic heavy rain, (b) De-
rained image produced by Cycle-GAN generator, (c) Vineyard image with
the addition of synthetic fog, (d) De-fogged image produced by Cycle-GAN
generator. The Cycle-GAN method removes equally well different types of
weather conditions.

was setup showing how visual servoing is affected by poor
object detection and the improvements using our approach.
In this section, the whole method is sequentially presented.

A. Rover Description

A wheeled robotic platform was developed to validate
the concept (see figure 5). The robot was designed and
constructed for research purposes, and thus it comprises
custom built in-house parts as well as off-the-shelf parts (e.g.
aluminum profiles, bearing units etc.). The motion system
features four mecanum wheels [29] to provide to the robot
omnidirectional motion capabilities. The wheels are powered
by four Maxon DC motors (RE 35) combined with planetary
gearboxes (GP 42) and incremental encoders (HEDL 5540),
providing 5 Nm of continuous torque at their output. Timing
belts and pulleys are used to transmit power to the wheels.

Two RoboteQ SDC2160 motor controllers are used to
drive the actuators, since each controller can drive two
actuators. The encoders attached to the motors are read
by the controllers, which run local PID control schemes
that can follow precisely speed commands for all wheels.
The two motor controllers are attached to a RoboteQ’s
proprietary CAN-based meshed networking scheme, called
RoboCAN, which enables data exchange between them.
The first controller is connected via USB to the system’s
master computer (Jetson Nano) running Ubuntu 18.04 with
JetPack 4.4.1. Through this serial connection, the master
computer controls the platform motion system via simple
motion control commands (see figure 6). The ROS option
was dropped since YOLOv3 is computationally intensive and
ROS would create an extra overhead for Jetson nano.

B. The Method

The robot detects the grapes from a distance of up to
1.5 m away. Next, it aligns with the detected grape and



Fig. 5. The robotic platform developed for the visual servoing task.

approaches it until the grape is 20 cm away from the front
camera allowing it to capture a clear image of it. The camera
used is a Microsoft LifeCam Cinema with 720p resolution
and auto-focus. Concerning the visual servoing, the velocity
commands sent to the motors are inversely proportional to
the area the grapes are covering on every camera frame. As
the area of the bounding box is increasing, while the rover is
approaching the grapes, it decelerates. The robot stops when
the grape covers more than 70% of the total camera frame
area which has been tested to be at a distance of 20cm from
the grape. The inverse kinematics of the mecanum wheeled
rover are described in (3).

ω1
ω2
ω3
ω4

=
1
R


1 1 −(l1 + l2)
1 −1 (l1 + l2)
1 −1 −(l1 + l2)
1 1 (l1 + l2)


Vx

Vy
ωz

 (3)

where: [ω1..ω4] are the speeds of the four mecanum wheels,
R is the radius of the wheel, l1, l2 are the length and the width
of the rover, last Vx,Vy,ωz are the forward velocity, the lateral
velocity and the yaw rate of the platform respectively. The
rover is aligned with the detected grape by defining:

Vy =Vymax · (BBcenter−Fcenter) (4)

with BBcenter the center of the bounding box of the detected
grape and Fcenter the center of the camera frame. Since,
the distance between the rover and the detected grape less
than 1.5m, more sophisticated control is not required and
the current setup is working. Last, the rover approaches the
grape by defining:

Vx =Vxmax · (100%−BBarea) (5)

with BBarea the bounding box area normalised by the max
frame size so that is does not change magnitude in case
different camera models are used. If BBarea > 70% the rover
is moving showily; then we set Vx = 0, since the grape is
covering 70% of the frame. Using the inverse kinematics
presented in (3) the angular velocities of the wheels ωi,(i =
1..4) are calculated.

Fig. 6. Block diagram of the electronics, the motors and the motor
controllers of the rover.

In a real life scenario, we would most plausibly want
to use the robot to photograph the grape cluster and iden-
tify a disease, or in an advanced scenario, to grab the
cluster. Hence, identifying and following one grape cluster,
while smoothly decelerating before getting close enough,
efficiently simulates a real-life requirement.

In practice, the camera attached to the rover will receive
each frame, while YOLOv3 will perform object detection and
return the bounding box corresponding to the unique grape
cluster. The algorithm will calculate the area of the bounding
box and correspondingly Vx, Vy as in (4) and (5). Our goal
was to create a low-cost robust application that could be
easily used in PA robotic applications. As a result, instead of
using a high-end GPU for the entire processes, we switched
to the $100 priced Jetson nano [27] and to YOLOv3-tiny
[28], a lighter variation of YOLOv3. Using this setup, grape
detection was achieved at 10 FPS on Jetson nano.

Next, the previous setup is repeated, while the camera
frames are augmented with synthetic rain and again Vx, Vy
are calculated using YOLOv3-tiny. The aim is to show, that
neither the recognition of the grape cluster will be continuous
and correct, nor the motion of the rover will be smooth,
putting in danger, consequently, the robotic equipment and
plausibly the cultivation as well.

Finally, synthetic rain is added to the camera frames and
the de-rain method developed and discussed in Section IV is
applied. The object detection and the motion control, then,
follows as known. The third experiment is expected to ap-
proach the initial experiment as if there was no rain, not only
confirming the theoretical results of the previous sections,
but providing us with a robust PA robotic application that
performs effectively under various weather conditions such
as rain.

V. RESULTS

The experiments are conducted for different values of the
grape cluster detection confidence threshold (Figures 7 and
8). A typical application recognizes an object as part of the
class when the confidence level is higher than 50%. Thus,
experiments were carried out with 20% (bellow average),
50% and 70% (higher than average) confidence levels. In
all three cases, in the absence of rain, the rover successfully
approaches the grape cluster in a smooth way and ultimately
decelerates when the desired distance is covered. The grape
detection is clear when no rain is present, even when the con-
fidence level is set to 70%. The robot smoothly approaches
the grape, and a couple of frames are excluded due to the use



Fig. 7. Rear left (RL) wheel speed for different detection confidence thresholds for the duration of the (a) no-rain experiment, (b) rain experiment and
(c) de-rained experiment. Zero velocity means that the algorithms does not recognise any grape in the captured frame.

Fig. 8. The prediction confidence of the grape cluster for the duration
of all three types of experiments. Using the de-rain method the detection
confidence is always greater that 50% leading to smooth visual servoing.

of YOLOv3-tiny onboard, which is weaker than YOLOv3.
Undoubtedly, for a typical 50% classification borderline, the
motion is ideal for a real application.

On the other hand, when rain is added to the scenery,
the task’s difficulty heavily increases. When the confidence
level is set up to 70%, the algorithm does not identify the
grape cluster, except from a sparse number of frames where it
vaguely moves, and fails to approach it. In the typical case of
50% confidence level, the rover reaches the grape cluster but
in a completely bumpy motion, as it does not recognize the
grape in a plethora of frames. When the confidence threshold
is lowered to 20%, the rover reaches the grape cluster in a
somehow more smooth way, but still with many standstills
and discontinuity, rendering the application inefficient for
real-life scenarios , as 20% confidence level is unrealistic.
It is worth noting that the rover reaches the grapes at least
10 seconds later due to the on-off produced motion.

Finally, the de-rained method is applied. The velocity’s
smoothness is successfully restored for both 20% and 50%
threshold of confidence. At the redundant confidence thresh-
old of 70% the rover platform approaches and finally reaches
the grape cluster in a non-smooth way indicating that the
algorithm identifies the grape indeed, but not with high
confidence, due to the imperfect de-rain recovery. It is worth
mentioning, that the rover reaches the target 10 seconds later
than the rain experiment, due to the delay caused by the

prediction of the Cycle-GAN generator.
All the above experimental results are shown in Figure

7 where the real left (RL) wheel speed is plotted for the
duration of each experiment, i.e no-rain, rain and de-rain,
for the different levels of detection confidence. Figure 8
depicts the confidence level for each captured frame, for
no-rain/rain/de-rain experiments for the case of the 50%
threshold. It is clear that the detection confidence level for
the no-rain experiment is always over 50% and no frame
without detection exists. When the synthetic rain is added,
the confidence output oscillates intensely, while in a lot
of frames the grape cluster is undetected. Therefore, when
de-rain is applied the confidence level is restored leading
successfully to a robust method for a PA task.

VI. CONCLUSION AND FUTURE WORK

In this paper, we experimented with recognition of grape
clusters in a vineyard by exploiting the state-of-the-art mod-
els Mask-RCNN and YOLOv3 using database images. After
bringing out the sensitivity of object detection algorithms to
weather conditions and specifically rain, we proceeded with
applying de-raining methods to alleviate this phenomenon.
Cycle GANs proved to be the most suitable and robust for
our work, not only due to their ability to efficiently eliminate
different weather circumstances but also because they can
de-rain an image in real time. Combining the aforemen-
tioned experiments, we created a compact and robust robotic
method for identifying and following grapes under severe
weather circumstances in a real life scenario. At that stage,
only YOLOv3-tiny was able to run in real-time on the low-
cost SBC computer of the rover.

Future work includes further experiments to achieve an
even higher FPS algorithm for de-raining by modifying cycle
GANs. Moreover, being able to eliminate more than one
weather condition from a single image, i.e fog and rain to-
gether, would significantly improve the speed and robustness
of the application, while rendering it applicable in more
scenarios. Finally, converting the proposed lab experiment
into a setup of multiple grape clusters with unique identifiers
for each one, so that the robot visits each one, would bring
the application one step closer to real life concepts applied
in precision agriculture.
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